# Impacts of Back Grind Damage on Si Wafer Thinning for 3D Integration

#### Tomoji Nakamura, Yoriko Mizushima, Young-suk Kim, Akira Uedono, and Takayuki Ohba

Fujitsu Laboratories Ltd., University of Tsukuba Tokyo Institute of Technology



# Outline

- 1. Background and motivation
- 2. Experimental
  - Thinning conditions and characterization
- 3. Subsurface damaged layers in thinned wafers
  - Impacts of coarse grinding thickness
  - Remaining damages after fine grinding
  - Subsurface structure after CMP
- 4. Impact of ultra-thinning on device characteristics



# **3D Integrations for "More than Moore"**



#### **Bumpless 3D-IC Structure with Ultra-thinned wafers**



#### Benefits of 10-µm Thinning

- Low aspect ratio for TSV processing
- Wiring length shortening
- RC delay mitigation

eps

Low power consumption

T. Ohba: Microelectron. Eng.2010

# Wafer Thinning by Grinding & Polishing



## Motivation

Analyzing subsurface damaged layers caused by thinning;

- 1. Damages and defects dependence on removed Si thicknesses
- 2. Impacts of grinding & polishing conditions on the damages
- 3. Impacts of ultra-thinning on device characteristics
- 4. Features of the damaged layer; thickness, microstructure, defects, stress etc



### **Experimental: Sample Preparations**

#### **Thinning conditions**

| Sample Wafer  |        | Grinding thickness (µm) |        |        |
|---------------|--------|-------------------------|--------|--------|
| No. thickness | Coarse | Fine                    | Stress |        |
|               |        | grind                   | grind  | relief |
| 1             | 650    | 125                     | -      | -      |
|               | 300    | 475                     | -      | -      |
|               | 100    | 675                     | -      | -      |
|               | 690    | 75                      | 10     | -      |
| 2             | 650    | 75                      | 50     | -      |
|               | 630    | 75                      | 70     | -      |
|               | 600    | 75                      | 100    | -      |
|               | 320    | 425                     | 30     | -      |
| 3             | 300    | 425                     | 50     | -      |
| 4             | 649    | 75                      | 50     | 1      |
|               | 647    | 75                      | 50     | 3      |
| 5             | 645    | 75                      | 50     | 5      |
| meps          |        |                         |        |        |

**Grinding & Polishing apparatus: DGP8761** 

|                 | Particle<br>size |
|-----------------|------------------|
| Coarse<br>grind | #320             |
| Fine grind      | #2000            |

Impacts of coarsegrind thickness on remaining damages

Remaining damages after fine-grinding

## **Experimental: Damage Analyses**

#### Laser microscopy

• Surface roughness: Ra (due to grinding marks)

#### μ-Raman scattering analysis: 458 nm Ar+ laser, 0.7 μmφ

- Subsurface structural change: crystalline & amorphous peaks
- Elastic strains & stresses: TO phonon peak shifts

#### Cross-sectional TEM

• Micro structures & defects in the subsurface: bright field images under the (110) zone axis

#### Positron annihilation analysis

Vacancy-type defects: S parameters in Doppler broadening spectra



# **Grinding Thickness Dependence of Ra**



#### Raman Spectra from Coarse-grind Subsurface



## **X-TEM Observation of Coarse-grind Damage**



### **Impacts of Coarse-grind Thickness**

#### **Thinning conditions**

| Sampla  | \\/ofor   | Grinding thickness (µm) |       |        |
|---------|-----------|-------------------------|-------|--------|
| No. thi | thickness | Coarse                  | Fine  | Stress |
|         |           | grind                   | grind | relief |
| 1       | 650       | 125                     | _     | -      |
|         | 300       | 475                     | -     | -      |
|         | 100       | 675                     | -     | -      |
|         | 690       | 75                      | 10    | -      |
| 2       | 650       | 75                      | 50    | -      |
|         | 630       | 75                      | 70    | -      |
|         | 600       | 75                      | 100   | -      |
|         | 320       | 425                     | 30    | -      |
| 3       | 300       | 425                     | 50    | _      |
| 4       | 649       | 75                      | 50    | 1      |
|         | 647       | 75                      | 50    | 3      |
| 5       | 645       | 75                      | 50    | 5      |

**(meps** 

**Grinding & Polishing apparatus: DGP8761** 

|                 | Particle<br>size |
|-----------------|------------------|
| Coarse<br>grind | #320             |
| Fine grin<br>d  | #2000            |

## **Subsurface Damage after Fine Grinding**

T. Nakamura: 3DIC2013



## **Raman Spectra and Imaging of Subsurface**



# **Ground Thickness Dependence of Peak Shift**





- $\checkmark \Delta \omega$  was obtained from randomly chosen ten points
- Higher peak shifts are ascribed to compressive lattice strains
- Coarse-grind thickness dependences are smaller than the large variations

Y. Mizushima: JJAP2014

## **Raman Peak Distribution: (110) Cross-section**



✓ Plastic-deformed damaged layer is localized within less than1 µm depth

✓ Damaged layer influences inside compressive strains ranging up to 15µm depth

T. Nakamura: 3DIC2013

### **Raman Peak Distribution after CMP**



 ✓ The elastic strains ranging up to about 15 µm depth are caused by plastic-deformed damaged layer ( < 1 µm thick)</li>

T. Nakamura: 3DIC2013



#### **X-TEM Images of Backside Surface after CMP**



## Trapping of positrons by vacancy-type defects

A freely diffusing e<sup>+</sup> may be localized in an open space because of the Coulomb repulsion from ion cores.



✓ Larger S parameter means larger size of vacancy-type defects



## **Depth Distributions of S Parameters**



# Defects induced by grinding of Si wafers

The lifetime spectrum of a positron was measured at E = 2 keV and it was decomposed into two components.

 $t_1 = 285 \pm 9 \text{ ps}$  $t_2 = 490 \pm 20 \text{ ps} (I_2 = 11 \pm 2 \%)$ 

Leipner *et al.*, Physica B 340-342, 6 17 (2003)

Fz-Si (P doped) was deformed at RT and 800°C up to 16% in an anisotro pic multi-anvil apparatus under a co nfining pressure of 5 GPa.

Uedono et al., JAP 116, (2014)





## Summary: Subsurface Damages



- 1. Coarse grinding damages cause the roughness and defects of less than 5  $\mu m$  depth.
- After fine grinding plastic-deformed damaged layer with less than 200 nm thick still remains.
- 3. CMP process enables to remove residual damages such as structural defects and lattice strains except vacancy-type defects.



#### Ultra-Thinning of 300mm Wafer with 2 Gb DRAM



Extremely thinned down wafer from 775 to 4-µm, that is about 0.5 % of its original thickness.

Y. S. Kim: VLSI2014



#### Sequence of Wafer-on-a-Wafer (WOW) Process



#### **Effect of Ultra-thinning on Device Characteristics**



### Acknowledgments

This work was carried out at 3D development program in the WOW alliance and the WOW Research Center Corporation.

