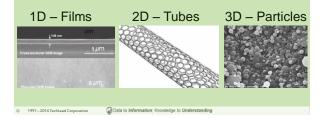
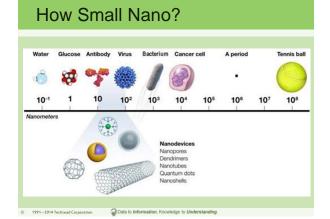

Nanotechnology in Electronics Packaging, Interconnect, & Assembly: Hype or Reality?

Charles E. Bauer, Ph.D. Herbert J. Neuhaus, Ph.D. TechLead Corporation

Presentation Outline

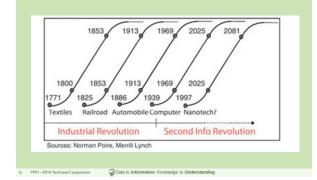
- Nanotechnology Fundamentals
- Application Opportunities
 - Packaging
 - Interconnect
 - Assembly
- Commercialization Strategies
 - Evolutionary
 - Revolutionary
- · Reality or Hype?

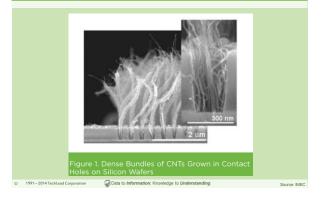

Nanotechnology Fundamentals


Section 1

Nanotechnology?

- The study of matter on the scale of atoms & molecules
- 1 to 100 nm in at least one dimension

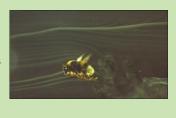

Nanotechnology Today


- Smaller
- Lighter
- Faster
- Stronger
- More Durable

Sound Familiar?

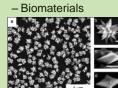
Next Great Innovation?

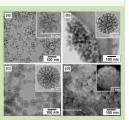
CNT as Cu Interconnect Replacement?



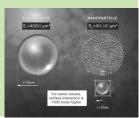
What Makes Nano Interesting?

- · Physical processes do not scale uniformly
 - Gravity
 - Friction
 - Combustion
 - Electrostatic
 - Van der Waals


Data to Inform


- Brownian
- Quantum

What Makes Nano Interesting?


- Affects all materials
 - Metals
 - Ceramics
 - Polymers

What Makes Nano Interesting?

- Nanotech materials exhibit remarkable new properties based on
 - Small dimensions
 - Large surface area
 - Novel structures
 - Unique combinations

Application Opportunities

Section 2

Nanotech Application Opportunities

- · Packaging
 - Die Attach
 - Flip Chip Bonding
- Interconnect
 - Additive Circuit Formation
 - Tin Whisker Control
- Assembly
 - Adhesives

1991-2014 TechLead Cor

- Stencil Printing
- 3D Printing

Die Attach Materials

Package Technology	Die Attach Material	Туре
Pressed Alumina Ceramic (CERDIP)	Silver-Filled Glass	Inorganic Adhesive
Laminated Alumina Ceramic (PGA, CQFP, Side-Braze)	Gold-Silicon Eutectic Silver-Filled Cyanate Ester	Hard Solder Organic Adhesive
Molded Plastic	Silver-Filled Epoxy	Organic Adhesive
– Mechanical – Electrical – Thermal	EE	

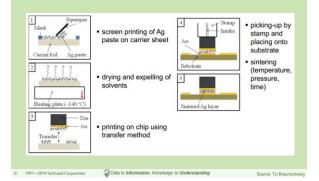
Conventional Die Attach Limitations

- High T Devices
 - Wide band gap power devices (SiC)
 - Hi-Bright LEDs
 - Higher melting point & thermo-mechanical properties

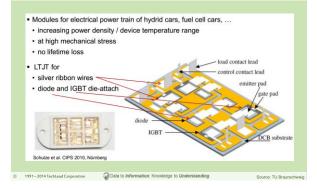
Data to Information: Knowledge to Under

- Temperature Sensitive Devices
 - III-V photodetectors

1991-2014 TechLead Corpore

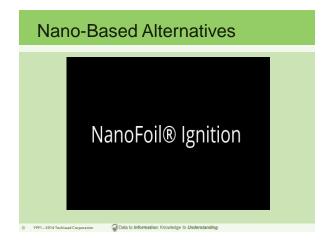

- Lower process temperatures

Nano-Based Alternatives


- Low Temp Sinter nano-Ag Paste
 - Sinters once surfactant volatilized
 - Highly reactive nano-Ag forms strong bonds
 - Several (pre)commercial sources

Nano-Based Alternatives




Nano-Based Alternatives

- Indium Corporation NanoFoil®
- · Reactive multi-layer foil providing instantaneous heat
- Vapor deposited alternating nano-layers of Aluminum (Al) & Nickel (Ni)
- Activated by pulsed local energy (electrical, optical or thermal)
- Foil reacts exothermically precisely delivering localized heat up to temperatures of 1500°C in thousandths of a second

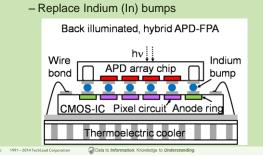
<section-header><section-header><complex-block><complex-block>

Nano-Based Alternatives

T reduction through nano-particle enhancement

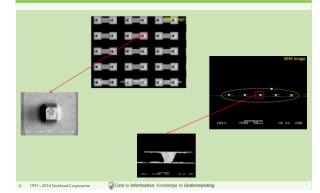
Flip Chip

- Reduced footprint
- Reduced profile
- Reduced inductance
- · Underfill compensates for CTE mismatch

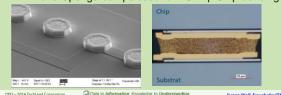

Conventional FC Limitations

- Fine pitch FC results in low stand-off solder bumps

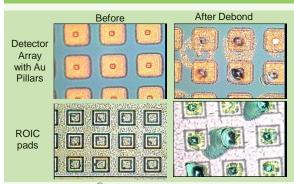
 Cu Pillars increase stand-off
- Alternative: Eliminate reflow
 - Sinterable nano-materials
 - Anisotropic conductive adhesives


Nano-Based Alternatives

Focal Plane Array Assembly


Nano-Based Alternatives Focal Plane Array Assembly - Nano-Ag low temp sinterable paste + Au pillars - 32 μm pitch, 6 μm pads - 15 μm pitch (next gen)

Nano-Based Alternatives



Nano-Based Alternatives

- Fraunhofer Nano-Sponge
 - Highly compressible porous Au
 - Bonding at low T & low pressure
 - Electroplating silver-gold alloy + silver etching
 - Nano-Sponge bumps used for TC-Flip Chip bonding

Nano-Based Alternatives

5

Fine pitch Flip Chip with Nano-ACF

- 30um pitch silicon
- · Copper pillar
- Nano-anisotropic conductive film
- Resistance comparable to solder for as assembled & HAST tested assemblies

Conventional FC Limitations

- Underfill bottleneck
 - Slow capillary flow
 - Post-reflow batch cure
- · No-flow variants
 - Require lower filler loading - Results in higher CTE

Nano-Based Alternatives

- Nanocomposite no-flow underfill
 - Self-fluxing no-flow polymer
 - 120 nm silica particles at 50% mass loading
 - No solder-pad bonding interference

Additive Circuits

- · Applications include
 - Solar cells & batteries
 - RFID tags
 - Flexible displays & lighting
 - Novelties: talking and scrolling packages

Data to Info

NAMICS

Printed Conductor Limitations

Conductive Inks (Particle fillers)

Data to Inform

- Ink curing generally requires temperatures over 400°C
- Exceeds capability of low cost substrates PET degrades above 100°C

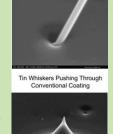
Nano-Based Alternatives

- · Novacentrix nano copper oxide ink
 - Print copper oxide ink
 - Reduce to Cu with an optical flash process
 - Inks formulated for Inkjet & Screen print

- IIMAK Graphene Ink
 - Electrically conductive carbon graphene ink
 - Printed electronics applications
 - Membrane switches
 - Flexible circuits
 - Displays
 - Electroluminescent lighting
 - Screen print & dry to remove solvents, no cure

Tin Whiskers

- Conductive, crystalline "growths" from tin finishes
- System failure via short circuit
- No single accepted mechanism established



Conventional Mitigation Strategies

- Avoid pure Tin or Zinc
- Reduce stress in plated finishes
 - Hot solder dip
 - High temp annealDiffusion barrier (reduce)
 - intermetallics)
- Physical barriers (insulation)

Data to Inform

- Conformal coating
- Increase spacing

Nano-Based Alternatives

Data to Info

- Tin Oxide Nano Particle Coating
 - Surface oxides removed from tin-plated copper
 - Tin oxide nano particles water solution sprayed
 - Annealed to regrow oxide
 - Hillocks formed instead of whiskers
 - Theory: Tin Oxide nano-particles relaxed stress

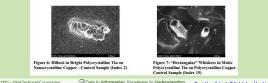
Data to Information; Knowledge to Understanding. Albert Wu & Y. C. Ding, F

Nano-Based Alternatives

- Rockwell-Collins Nanocrystalline Coatings
 - Alkali silicate glass containing nano ceramic particles Al₂0₃ ZnO 10-40nm
 - Reduced whisker formation
- Theory: Nano-particles fill cracks in Tin that produce whiskers

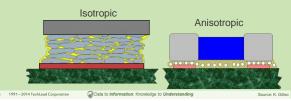
Data to Information; Knowledge to Understanding. Chris Dave Hillman, Rockwell-Collins

Nano-Based Alternatives


Lockheed-Martin - Lead Free Solder

- Printable Nano-Copper paste fuses at 200°C

Data to Information; Knowledge to Understanding Alfred Zinn, LM Advanced Technology Co

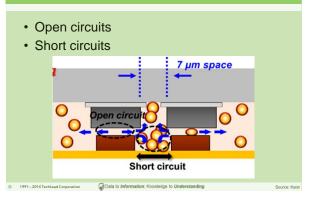

- Cu surface eliminates danger of whiskers
- Commercialization research at NTU (Singapore) in JV with LM

- · Johns Hopkins Nano-Texturization
 - Grain refining additives during electroplating
 - Tin over Polycrystalline Cu whiskers
 - Tin over Nano-Cu no whiskers
- Theory: Additives regulated tin stresses

Conductive Adhesives

- Solder replacement
- Metal-filled composite
- · Usually thermoset
- Used commercially for SMT & Flip Chip

Conventional Adhesive Limitations


Cost

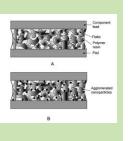
 Precious metal loading

 Conductivity

 Filler packing

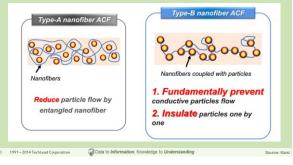
Conventional Adhesive Limitations

Nano-Based Alternatives

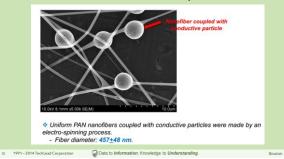

Data to Info

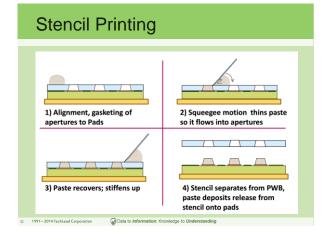
Nanoparticle impact

91 - 2014 Techlead Corporation

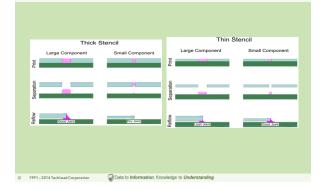

- Addition of nanoparticles forms additional bridges between conventional filler flakes
- Increases density of the conductive net
- Bimodal filler maintains good conductivity even at lower total filler loading
- Nano-particle reaction increases current capacity as well as conductivity

Data to Info

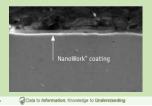



Nano-Based Alternatives

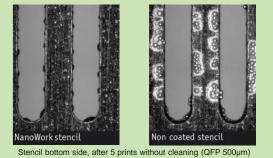
• KAIST – Nanofiber anisotropic ACF



KAIST – Nanofiber anisotropic ACF


Conventional Stencil Limitations

Nano-Based Alternatives


Nano-coated Stencils

- Nano-coatings on stencil bottom & aperture walls
- Nano-coating treatment follows laser-cutting
- Enhanced paste release from stencil apertures

Nano-Based Alternatives

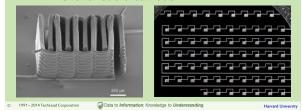
1991 - 2014 Te

Data to Information; Knowledge to Unde

3D Printing

1991 - 2014 Techlead Corporation

- No longer exclusive to hobbyists & hackers
- Commercial applications include
 - Rapid prototyping
 - Rapid manufacturing
 - Mass customization
- R&D applications include
 - Chemistry creating novel compounds - Medicine - artificial organs &
 - prosthetics Data to In



3D Printing Limitations

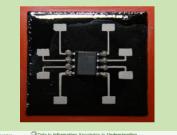
- · Original 3D printers used thermoplastics
 - Applied in successive 2D layersFully additive process
- Plastic lacks rigidity & strength
- · Plastic unsatisfactory "scaffold" for biologics
- Plastic nonconductive

Nano-Based Alternatives

- · Electro-chemically active inks
 - 3D print micro batteries
 - lithium metal oxide compound nanoparticles
 Inks for anode & cathode

Nano-Based Alternatives

Nano-Based Alternatives


Direct printed additive packaging

- Direct print
 - CNT composite substrate (1)
 - Interconnect (3)
- Pick & Place conventional components
- Direct print
- Conductive adhesive (4)
 Encapsulant (2)

Nano-Based Alternatives

Completed test circuit built with direct print additive packaging

Commercialization Strategies

tae to Und

Data to Information: Kno

Section 3

Evolutionary

Section 3a

Evolutionary = Minimum Risk

 Incremental improvements to an established technology

Evolutionary = Minimum Risk

Data to Information; Knowledge to Und

- "Drop in" solutions – e.g. nano coated stencils
- · Understood by current customers
- · Compatible with infrastructure
 - Supply chain

1991-2014 TechLead Corporation

- Equipment & processes
- Specs & standards
- · Favored by established vendors

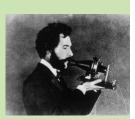
Data to Information: Knowledge to Under

Evolutionary ≠ Zero Risk

- Value capture difficult
 - Customers challenge price increases
 Efficiency good for user but not vendor
- Improvement may not be "good enough" – Incumbents advance as well
- Startups & new entrants at substantial disadvantage

Data to Information: Knowledge to Unders

Revolutionary = Disruptive


Data to Information; Knowledge to Unit

New technology that unexpectedly displaces an established technology

- Lacks refinement
- Often introduces performance problems
- Appeals to a limited audience

1991 – 2014 Techlead Corporation

 May not yet apply to a proven practical application

Revolutionary

Data to Information; Knowledge to Under

Section 3b

1991 - 2014 Techlead Coroc

Winning Disruptive Innovations

- · Telephone vs telegraph
- · Steam locomotive vs diesel electric
- · Solid state electronics vs vacuum tubes
- · Mini-mills vs integrated steel producers
- · Digital cameras vs film
- · Amazon vs brick and mortar bookstores
- iTunes vs compact disks vs records

Value Recognition Critical

- Unrecognized value
 - Threat
 - Lack of a response is a response

- Recognized value
 - Opportunity
 - Rapidly reconfigure value chain
 - Integrate innovation into manufacturing

Disruptive Innovation Challenges

- Extensive qualification necessary
- Standards & specs don't exist

 Standards bodies require critical mass
- Inertia: Resistance to change

 Fault finding vs credit taking

Disruptive Innovation Opportunities

- Redefine value chain
 Capture more value
- Advantage Startups & New Entrants
- Customer pull vs market push

Nanotechnology: Reality or Hype?

Data to Information: Knowl

tae to Unde

Section 4

Reality or Hype?

Exaggerated & Over-promised

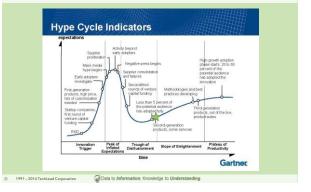
- Widespread misinformation
- Scientists exaggerate anticipated benefits to justify funding
- Alarmists peddle doom-&-gloom prophecies advancing their own agendas

Reality or Hype?

Provides vital performance enhancements

- Electronics packaging, interconnect, & assembly
- Evolutionary & revolutionary advances
- Commercially available today
- Exciting & promising R&D in progress

Reality or Hype?



Challenges

1991 – 2014 Techlead C

- Separate the light from the heat
 - Identify
 - Communicate
- Capitalize on low-risk evolution developments
 Low hanging fruit
- Exploit disruptive innovation carefully
 - Recognize opportunity & value

Reality or Hype?

Thank You!!

Herb Neuhaus, Ph.D. TechLead Corporation

Alan Rae, Ph.D. TPF Enterprises LLC

Data to Inform