Impacts of Back Grind Damage on Si Wafer Thinning for 3D Integration

Tomoji Nakamura, Yoriko Mizushima, Young-suk Kim, Akira Uedono, and Takayuki Ohba

Fujitsu Laboratories Ltd., University of Tsukuba
Tokyo Institute of Technology
Outline

1. Background and motivation

2. Experimental
 - Thinning conditions and characterization

3. Subsurface damaged layers in thinned wafers
 - Impacts of coarse grinding thickness
 - Remaining damages after fine grinding
 - Subsurface structure after CMP

4. Impact of ultra-thinning on device characteristics
3D Integrations for “More than Moore”

Source: 2011 ITRS – Exec. Summary Fig.
Bumpless 3D-IC Structure with Ultra-thinned wafers

Eliminating Bump
Small Form Factor
10-μm Thinning

Benefits of 10-μm Thinning

➢ Low aspect ratio for TSV processing
➢ Wiring length shortening
➢ RC delay mitigation
➢ Low power consumption

T. Ohba: Microelectron. Eng.2010
Wafer Thinning by Grinding & Polishing

Optimizing coarse- and fine-grinding, and CMP conditions are crucial.
Motivation

Analyzing subsurface damaged layers caused by thinning;

1. Damages and defects dependence on removed Si thicknesses

2. Impacts of grinding & polishing conditions on the damages

3. Impacts of ultra-thinning on device characteristics

4. Features of the damaged layer: thickness, microstructure, defects, stress etc
Experimental: Sample Preparations

Thinning conditions

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wafer thickness</th>
<th>Grinding thickness (µm)</th>
<th>Coarse grind</th>
<th>Fine grind</th>
<th>Stress relief</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>650</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>475</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>675</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>690</td>
<td>75</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>75</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>75</td>
<td>70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>75</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>425</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>425</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>649</td>
<td>75</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>647</td>
<td>75</td>
<td>50</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>645</td>
<td>75</td>
<td>50</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Grinding & Polishing apparatus: DGP8761

<table>
<thead>
<tr>
<th>Particle size</th>
<th>Coarse grind</th>
<th>Fine grind</th>
</tr>
</thead>
<tbody>
<tr>
<td>#320</td>
<td></td>
<td>#2000</td>
</tr>
</tbody>
</table>

Impacts of coarse-grind thickness on remaining damages

Remaining damages after fine-grinding
Experimental: Damage Analyses

- **Laser microscopy**
 - Surface roughness: Ra (due to grinding marks)

- **μ-Raman scattering analysis:** 458 nm Ar+ laser, 0.7 μm
 - Subsurface structural change: crystalline & amorphous peaks
 - Elastic strains & stresses: TO phonon peak shifts

- **Cross-sectional TEM**
 - Micro structures & defects in the subsurface: bright field images under the (110) zone axis

- **Positron annihilation analysis**
 - Vacancy-type defects: S parameters in Doppler broadening spectra
Grinding Thickness Dependence of Ra

- Ra; Surface roughness depends on the grinding abrasive condition
- Removed thickness dependence is smaller than in-plane variations
Raman Spectra from Coarse-grind Subsurface

Three types of spectra: amorphous, crystalline, and mixed structure

Coarse grind: 125 μm

T. Nakamura: 3DIC2013

T. Nakamura, Fujitsu Labs.
X-TEM Observation of Coarse-grind Damage

Stacking faults

Poly Si

Coarse grind: 125 μm

Amorphous Si

Plane-view image

T. Nakamura, Fujitsu Labs.
Impacts of Coarse-grind Thickness

Thinning conditions

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wafer thickness</th>
<th>Grinding thickness (µm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coarse grind</td>
<td>Fine grind</td>
<td>Stress relief</td>
</tr>
<tr>
<td>1</td>
<td>650</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>475</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>675</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>690</td>
<td>75</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>75</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>75</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>75</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>320</td>
<td>425</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>425</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>649</td>
<td>75</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>647</td>
<td>75</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>645</td>
<td>75</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

Grinding & Polishing apparatus: DGP8761

<table>
<thead>
<tr>
<th>Particle size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse grind</td>
</tr>
<tr>
<td>Fine grind</td>
</tr>
<tr>
<td>#320</td>
</tr>
<tr>
<td>#2000</td>
</tr>
</tbody>
</table>
Subsurface Damage after Fine Grinding

Coarse grind: 75 µm
Fine grind: 50 µm

Dark contrast layer
- 100 ~ 200 nm thick
- Interference fringes
- Distorted dislocation contrasts
- Almost original crystalline structure

Amorphous Si

Coarse: 425 µm
Fine: 50 µm
Raman Spectra and Imaging of Subsurface

Amorphous and crystalline Si areas remain along grinding marks.

Coarse grind: 75 µm
Fine grind: 50 µm

T. Nakamura: 3DIC2013
Ground Thickness Dependence of Peak Shift

\[\Delta \omega (\text{cm}^{-1}) \]

<table>
<thead>
<tr>
<th>Ground thickness</th>
<th>No.</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>75</td>
<td>75</td>
<td>425</td>
</tr>
<tr>
<td>Fine</td>
<td>10</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

\(\Delta \omega \) was obtained from randomly chosen ten points

Higher peak shifts are ascribed to compressive lattice strains

Coarse-grind thickness dependences are smaller than the large variations

Y. Mizushima: JJAP2014
Raman Peak Distribution: (110) Cross-section

- Peak broadening due to damage
- Peak shift due to elastic strain
- 50 MPa

- Plastic-deformed damaged layer is localized within less than 1 μm depth
- Damaged layer influences inside compressive strains ranging up to 15 μm depth

T. Nakamura: 3DIC2013
Raman Peak Distribution after CMP

- The elastic strains ranging up to about 15 μm depth are caused by plastic-deformed damaged layer (< 1 μm thick)

T. Nakamura: 3DIC2013
X-TEM Images of Backside Surface after CMP

- Defective dark contrast layers disappear
- Atomically flat surface is observed after polishing only 1 μm thick

T. Nakamura: 3DIC2013
Trapping of positrons by vacancy-type defects

A freely diffusing e^+ may be localized in an open space because of the Coulomb repulsion from ion cores.

ΔE_γ: Doppler shift, $m_0c^2 = 511$ keV

E: incident positron energy

W: low momentum part

✓ Larger S parameter means larger size of vacancy-type defects
After fine grinding, vacancy-type defects range up to 0.1 μm depth

S parameter distributions can distinguish defect density difference between 1- and 5-μm thick CMP samples.
Defects induced by grinding of Si wafers

The lifetime spectrum of a positron was measured at $E = 2$ keV and it was decomposed into two components.

$t_1 = 285 \pm 9$ ps
$t_2 = 490 \pm 20$ ps ($I_2 = 11 \pm 2\%$)

Vacancy (V or V_2)
Vacancy cluster (V_{18})

Fz-Si (P doped) was deformed at RT and 800°C up to 16% in an anisotropic multi-anvil apparatus under a confining pressure of 5 GPa.

Uedono et al., JAP 116, (2014)
Summary: Subsurface Damages

1. Coarse grinding damages cause the roughness and defects of less than 5 μm depth.

2. After fine grinding plastic-deformed damaged layer with less than 200 nm thick still remains.

3. CMP process enables to remove residual damages such as structural defects and lattice strains except vacancy-type defects.
Ultra-Thinning of 300mm Wafer with 2 Gb DRAM

Light Transparence on 4\(\mu\)m thick DRAM Wafer

Cross-section of 4\(\mu\)m DRAM Wafer

Extremely thinned down wafer from 775 to 4-\(\mu\)m, that is about 0.5 % of its original thickness.

Y. S. Kim: VLSI2014
Sequence of Wafer-on-a-Wafer (WOW) Process

Temporary bonding & Thinning
- Glass handle wafer
- DRAM wafer
- Temporary adhesive

Permanent Bonding
- Glass handle wafer
- Base wafer
- Permanent adhesive

De-bonding
- Glass handle wafer
- DRAM wafer
- Base wafer

Wafer Probing
- DRAM wafer
- Base wafer

Graph
- Total Si Thickness [µm]
- Distance from Wafer Center [mm]
- Si thickness [µm] | Mesh size of grind wheel | TTV [µm]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Coarse</td>
<td>Fine</td>
</tr>
<tr>
<td>20</td>
<td>#320</td>
<td>#2000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y. S. Kim: VLSI2014

T. Nakamura, Fujitsu Labs.
Effect of Ultra-thinning on Device Characteristics

<table>
<thead>
<tr>
<th>Device Node</th>
<th>FRAM</th>
<th>Logic</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>9μm</td>
<td>7μm</td>
<td>4μm</td>
</tr>
</tbody>
</table>

SEM Picture

Electrical Property

VLSI2010 IEDM2009 VLSI2014

T. Nakamura, Fujitsu Labs.
Acknowledgments

This work was carried out at 3D development program in the WOW alliance and the WOW Research Center Corporation.